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AN ANALYSIS OF POTENTIAL PROTECTIVE BREATHING
DEVICES INTENDED R USE BY AIRCRAFT PASSENGERS

INTRODUCT ION

Various types of oxygen masks and supporting regulators have been carried
aboard aircraft to provide breathing oxygen to flightcrews. With the increase
in routine flight altitudes to 40,000 ft* and the concurrent improvement in
cabin pressurization svstems, flightcrews have relied on oxygzn equipment for
protection required in the event of decompression rather than for continuous
in-flight use. However, the oxygen equipment must be connected to the air-
craft oxygen supply, be readily available to the crew, and be capable of being
donned in less than 5 s (1). Because of the possibility that smoke and other
products of combustion from in-flight fires or toxic fumes from leaking cargo
containers might enter the flight deck, the flight-deck crew must also be
provided with protective breathing equipment (1).

Because respiratory protection is required in either of the above condi-
tions, the use of the quick-don crew oxygen mask as a protective breathing
device is logical, providing provisions are made to protect the visual
processes. The air carriers have taken this approach and provide supple-
mentary goggles for use with crew oxygen masks, thereby satisfying the
requirements for respiratory and visual protection.

Various types of oxygen masks with supporting oxygen supplies and controls
have been used aboard air carrier aircraft to provide breathing oxygen to
passengers in the event of a loss of cabin pressure. Passenger masks must
cover the nose and mouth and provide a tracheal oxygen partial pressure of at
least 100 mm for altitudes to 18,500 ft and 83.8 mm for altitudes from 18,500
ft to 40,000 ft (2,3). Most passenger oxygen masks are of the continuous-
flow, phase-dilution type that provide a high concentration of oxygen during
the initial portion of each inhalation, thereby providing a high concentra-~
tion of oxygen to the alveoli of the lungs. As inhalation continues and the
oxygen reservoir bag is drained, ambient air is introduced through the
ambient~dilution valve, providing air to the respiratory "dead spaces" where
little gas exchange occurs. A system of this type provides sufficient oxygen
to maintain useful consciousness, vet is very conservative in the amount of
oxygen required from the aircraft system.

Continuous-flow, phase-dilution masks are generally provided with a
flow of oxygen that increases from about 0.5 L/min at 15,000 ft to 3.1 or
3.2 L/min at 40,000 ft. A design of this type utilizes the expansion of fhe
oxygen as it is released from the aircraft system to provide an increased
volume flow to the mask. At 40,000 ft, with a flow of 3.1 L/min and an
expansion ratio of approxinately 8.5/1 {Body Temperature, Pressure, Saturated/
Normal Temperature, Pressure, Dry (BTPS/NTPD)}, the system becomes very
efficient and little, if any, ambient air is inhaled. At 15,000 ft, where

*40,000 f£ (12,192 m). In order to be consistent with the units commonly used
in the aircraft industry, in aircraft instrument displays, and in air traffic
control flight levels, all altitudes in this report will be expressed in feet.
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very little supplemental oxvgen is required (a flow of 0.5 L/min and an
expansion ratio of approximately 2.1/1 BTPS/NTPD) most of the inspired pas
will be ambient air inhaled through the dilution valve. Consequentlyv, the
masks function as intended bv providing protection during decompressions,
but are of limited value in a smoke/fume environment unless a decompression
to a high altitude also occurs.

In November 1979, an American Airlines B-727 developed a smoke/fume
atmosphere following an in-flight explosion of a low-vield bomb. Because of
the intense increase in the smoke/{fumes concentration in tue cabin, the flight-
deck crew manuallyv deploved the passenger oxyvgen masks. Passengers donned the
masks and, in the ensuing investigation, indicated that this action by the
crew had saved their lives. In Januarv 1980, a Hughes Airwest DC-9 developed
fumes in the cabin while in flight. The flight-deck crew manually deploved
the passenger oxvgen masks. Passenger reactions were similar to those in the
B-727 incident. Subsequently, Boeing and McDonnell Douglas issued bulletins
indicating that manual deplovment of the passenger masks, without a decompres-
sion, would not provide protecticn from smoke/fumes because there is no oxvgen
flow to the masks at normal cabin altitudes (4,5). Passengers in the incidents
cited probablyv derived some psvchological benefit from the masks, feeling that
"something" was being done. This probably reduced the tendency to hyperven-
tilate which often accompanies anxiety. However, partial protection could be
provided by deploving passenger oxvgen masks in aircratt equipped with oxygen
generator systems (e.g., the DC-10, L-1011, and A-300). The oxygen generators
are designed to provide flows of 3.3 to 3.5 L/min NTPD per attached mask
during the early period of generation, with decreasing flow during the later
period of generation. This partial protection would be limited in value but
would be better than no protection.

Fume protection for evacuation purposes during a postcrash fire can be
provided with a simple hood device provided the hood is donmned prior to an
increase in the smoke/fume concentrations within the aircraft cabin (6,7,8).
It was proposed to locate these devices where they would be readily available
to passengers for use in an emergency evacuation where smoke/fume concen-
trations constituted a hazard (9). This proposal was never adopted due to
the resulting criticism concerning excessive cost, pilferage, liability,
questions concerning passenger acceptability, and the hazards caused by delay
in donning the device or its improper use (8). Though the use of evacuation
hoods was not approved, the Federal Aviation Administration (FAA) made a
commitment to continue its research and study of anyv potentially beneficial
approach to providing passengers protection from s™ <e/fume environments (10).

A cooperative project with the FAA Technical Center (ACT-350) was
initiated to examine concepts that might lead to the development of passenger-
type protective breathing devices. The desirable features of such a device
include decompression protection, protection from toxic smoke/fumes produced
during in-flight fires, and some protection during emergency evacuations. It
was intended that these capabilities would be included in a single device that
would not require decision-making by the passenger other than to don the device.
Additional considerations included the oxygen requirements for the device vs.
those in current use, variations in user populations, and potential economic

factors.
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METHODS

A respiratory mass spectrometer (Perkin-Elmer MGA-1100) that provided on-
line analyses for oxvgen, nitrogen, and carbon dioxide of each breath was
used as the primary analvtical instrument (Figure 1). A sample volume
totaling 15 mL each minute was continuously drawn from the breathing device
for gas analyses. Digital readouts for carbon dioxide, nitrogen, and oxygen
provided instantaneous monitoring of gas concentrations. A Honeywell Model
1858 fiber-optic oscillograph was used to produce fast-response, analog
recordings of the gas analyses from the mass spectrometer. - The mass
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Figure 1. Diagram of the system used for testing
protective breathing devices.
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spectrometer was calibrated in the static mode by continucus sampling of
calibration gas mixtures and in the dvnamic mode bv alternating gases every
3 to 5 seconds with a multiple selector gas chromatography valve (Figures 1
and 2). Calibration gases were Matheson Primarv Standard grade mixtures,
and oxygen used for testing was Aviator's Breathing Oxvgen. A Matheson
Model 8240 mass flow controller was used to regulate gas flow to those test
devices that required a constant flow of oxygen (Figure 1). An Eros
Intertechnique Model 10-04 oxygen mask-regulator assembly with emergency
pressure capabilities was used to obtain respiratory control data for each
test. A Hewlett-Packard Model 78203A heart rate module was used to monitor
subjects' heart rates. Data reduction was accomplished using a Hewlett-
Packard Model 9820 computer equipped with digitizer and X-Y plotter
accessories.
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Figure 2. Static and dynamic calibration recording
from the mass spectrometer.
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TEST DEVICES

I.

II.

I1tL.

Iv.

VI.

VII.

“were interconnected through four 10 mm open-ports to pravide e

Robertshaw part number (P/N) 900-700-062-01, equipped with a hood-
mounted demand regulator, P/N 900-002~143, that maintained a slight
positive pressure inside the hood. The hood had an elastic band-
tvpe neck seal with an internal volume slightly in excess of an
adult's head.

Sheldahl P/N 1009729, modified to include a contimuous-flow gas inlet
to provide a breathing and venting flow of oxyges. The hood had a
septum-type latex neck seal and an internal volume of approximately
20 L (Figure 3).

Sheldahl hood as described in 11, modified to have an internal volume
of approximatelvy 10 L (Figure 4).

Sheldahl hood as described in 11, modified to include a dual compart-
ment svstem having approximately 10 L in each compartment (Figure 5).
Oxygen was delivered to the lower compartment., The two compartments

restricted venting between the compartments. The upper compartment
had one 10 mm open vent to ambient air.

Scott-Sierra mask P/N 289-601-5, a continuous-flow, phase dilution
type passenger oxygen mask equipped with a heavy duty head strap,

P/N 289~607 (Figures 6 and 7). This mask has been FAA approved under
technical standard order (TSO) -C64, oxygen mask assembly, continuous
flow, passenger (for air carrier aircraft), and was used for compar-
ison testing.

Scott-Sierra oxygen mask as described in V, modified to include a
flat rebreather bag 10 in wide X 14 in long fabricated from a soft,
lightweight plastic. The rebreather bag was commected to the mask
exhalation and ambient dilution valves (Figures 8 and 9). Two 6 mm
open ports were located in the distal end of the rebreather bag to
provide ambient venting.

Scott~-Sierra oxygen mask as described in VI. The rebreather bag was
modified to contain two one-way valves located im the distal end in
lieu of the open port vents. Of these, one was a dump or exhalation
valve from the rebreather bag and was spring-compensated to maintain
a slight internal positive pressure in the bag. The other was an
ambient dilute (or antisuffocation) valve into the rebreather bag
and was nonpressure compensating.
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Front view of unmodified

Figure 6.
Scott-Sierra passenger mask.




Figure 7. Side view of unmodified
Scott-Sierra passenger mask.
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Figure 8. Front view of modified
Scott-Sierra passenger mask.
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Figure 9. Side view of modified

Scott~Sierra passenger mask.
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TEST PROCEDURES

Baseline (control) tests

Each subject was provided a brief period to relax. Then the overall
project objectives and specific testing procedures were explained. To
establish baseline data from which to evaluate the passenger-type protective
breathing devices, subjects were tested while using a crew mask-regulator
assembly. An Eros assembly was donned by the subject, and the regulator set
to the nondilution and emergency pressure modes. The subject remained
quietly seated and read items of interest during testing to minimize any
conscious influence on the breathing pattern. Breathing air was delivered
through a manifold assembly to the mask-regulator combination for 4 min. By
adjusting the manifold assembly, Aviator's Breathing Oxvgen was delivered to
the mask-regulator for another 4 min. These data provided a baseline
concerning each subject's breathing rate and pattern, end expiratory Poj,
PNZ, and Pcoz, while breathing air and oxygen. They also provided a measure
of the maximum rate of increase in end respiratory Pg; that could be expected
for each subject after being provided with 100 percent oxygen. These data
allow a more reliable basis for making comparisons to the various test devices.

Protective breathiqg?(experimental) tests

Sheldahl hoods

A passenger oxygen mask with the reservoir bag and delivery hose removed
was positioned over the subject's nose and mouth to provide a means for
sampling respiratory gases as they were exhaled from the lungs. A mass
spectrometer gas sampling capillary was positioned through the mask wall
into the mask cavity. The hooed was then inflated with air, domned by the
subject, and the specified flow of oxygen to the hood initiated. The hood
was then worn for the 15-minute test period or until the subject indicated a
desire to remove the hood. For each succeeding test in the series, the flow
of oxygen to the hood was regulated as follows: 10, 8, 6, 5, or 4 L/min.

The test series was continued at decreasing flow rates until the subject
requested that testing be terminated. Early testing indicated tnat the hood,
when used in this manner, would not provide adequate protection during a
decompression. The testing procedure was then changed to include an initial
2-minute purge with oxygen provided at the rate of 20 L/min. The flow was
then reduced to the scheduled rate for the ramaining 13 minutes of each test.
End expiratory PO, PCOZ, and PN2 were recorded for each breath. End
inspiratory Pcgy, was recorded as a measure of carbon dioxide buildup within
the hood. Though a record was made or the entire test, only those data from
minutes 1 to 10, 12, and 15 were processed, thereby saving considerable time
and effort in data reduction.

Robertshaw hood

The same gas sampling and data recording techniques used for the Sheldahl
hoods were used in testing the Robertshaw hood. Adjustments in the flow of
oxygen were not possible since this hood is equipped with a demand regulator,
The flow of oxygen during each breath was determined by means of an electromnic

flowmeter.
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Modified passenger masks

A mass spectrometer gas sampling capillarv was inserted through the mask
wall into the mask cavity. The subject donned a mask equipped with a
rebreather bag and oxygen flow was initiated. The oxygen flow of 10 L/min
for the first test of each series was reduced for each following test in the
series to 8, 6, 5, 4, or 3 L/min, or until the subject requested that the
test be terminated. Each test condition was repeated with the same subject
wearing a standard oxygen mask (of the same design) without the rehreather
bag in order to estimate anv improvement in mask efficiency due to the
modification.

RESULTS
Robertshaw hood: test device 1

1t has been previously demonstrated that the Robertshaw hood, P/N 900-
700-062-01, provides adequate respiratory protection for 15 minutes from
the contaminants expected to be present in an otherwise survivable in-flight
fire (8). When compared to the crew mask (100 percent oxygen with emergency
pressure applied) the end expiratory PO, obtained while wearing the hood was
approximately 101 mm Hg less for the first minute, 48 mm less for the second
minute, and 15 mm less for the third minute (Table 1). The increased time
required to achieve a high PQ,, or conversely, a low PNZ' is due to the
additional volume within the hood and the time required to flush nitrogen
from the hood and respiratory system. By the end of the sixth minute, the
PNy was less than 3 mm--an indfication that acceptable respiratory protection
from contaminants produced during in-flight fires can be provided with this
hood.

The increase in end expiratory P02 for subjects wearing this hood
compares favorably with corresponding values obtained with passenger oxvgen
masks that have been TSO-C64 approved. However, the oxygen requirements for
this hood ranged from 3.5 to 4.0 times the amounts required for TSO approved
masks (Tables 11-18) when tested under similar ambient environments. These
data indicate that acceptable decompression protection might be provided
with the Rebertshaw hood; however, the oxygen requirements to support this
type of system would be expensive for aircraft use. Therefore the use of
this hood with current aircraft oxvgen systems and supplies is not feasible

Results showed that the end expiratorv PCps levels in the heood were
slightlv higher than the corresponding values obtained when the crew mask
was worn (Table 1). The end inspiratory PCpy levels (an indication of Cp2
concentrations in the hood) were approximatelvy 8 mm for the hood as compared
to less than 1 mm for the crew mask. Inspiratory carbon dioxide pressures
of 8 mm are tolerable for the time intervals involved and would not be
expected to cause the user to prematurely remove the device when used with
an appropriate oxygen system.

This hood would not provide acceptable protection for evacuations
requiring more than a few seconds due to the elevated carbon dioxide concen-
tration that could develop once the hood was disconnected from the aircraft
oxygen system,

14
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Sheldahl hood: test device II

Due to the large internal volume of the Sheldahl hood, P/N 1009729, the
purge flow of 20 L/min of oxvgen for 2 minutes did not produce a rapid
increase in end expiratory PQy or, conversely, a rapid decrease in Py
(Tables 2, 3, 4, and 53). When compared to the crew mask, *!.e end expiratory
Pg, obtained while wearing the hood was approximately 200 mm less for the
first minute and 210 mm less for the second minute. When compared to a
TSO-C64-approved passenger oxygen mask provided with a flow of 6 L/min
(approximately equivalent to the volume flow provided these masks at 26,500
ft) (Tables 11 and 15), end expiratory Pg, values obtained while wearing the
hood were approximately 170 mm less for the first minute and 1350 mm less for
the second minute, the most probable critical times during a decompression.
These data indicate that this hood, even when provided with a purge flow of
20 L/min of oxygen for 2 minutes, would not provide acceptable protection
should a severe decompression occur.

It has been previously demonstrated (6,8) that this hood, when worn for
emergency evacuations (1-3 min) did provide protection from a contaminant
atmosphere. End expiratorv PN values obtained while wearing this hood
indicate that an acceptable neck seal had been achieved. The higher PNy
values occurred during those tests having lower sustain’ag flows of oxygen,
a reflection of the time required to flush residual nitrogen from the large
internal volume of this hood.

End expiratory and inspiratorv PCq, values obtaired while wearing the
hood were stable during the first 2 minutes. After the purge flow was
discontinued and the sustaining flow was established, PCOZ levels increased
inversely to the flow rate (Tables 2, 3, 4, and S). At a sustaining flow
of 10 L/min, end expiratory PCgy increased from 37 to 43 mm and end inspi-
ratory levels increased to 28 mm. Of the five subjects tested at a
sustaining flow of 5 L/min, two removed the hood prior to completion of the
15-minute test. These data indicate that a sustaining flow of about 8 L/min
would be required if the hood is to be used for in-flight fume protection.
If this hood is to be worn for evacuation purposes rollowing in-flight use,
a sufficient sustaining flow would be required to keep Pggo levels within
tolerable limits following disconnection fro. the aircraft system.

Sheldahl hood, reduced volume: test device III

The internal volume of the Sheldahl hood, P/N 1009729, was reduced to
determine to what extent the oxygen and carbon dioxide levels could be
controlled as compared to the corresponding times and flow rates for the
unaltered hood. As expected, an increase in end expiratory PQs did occur
due to the decreased hood volume (Tables 6, 7, 8, 9, and 10). However,
oxygen levels were not adequate to provide acceptable protection should a
decompression occur.
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As expected, end expiratory and inspiratory Pggy levels increased as
the sustaining flow rates decreased. Respiratory rates did not increase as
a function of the carbon dioxide levels; however, ventilatorv volume
increased (direct observation of the subjects). Subjects began to remove
the hoods during those trials in which a sustaining flow of 6 L/min was
provided (Table 6). 7These data indicate that, if protection from contam-
inants produced bv in-flight fires is to be provided with these hoods, a

sustaining flow of approximately 8 L/min would be required. If these devices

are to be worn for evacuations following in-flight use, a sustaining flow
of 10 L/mia or greater would be required to insure that carbon dioxide
levels in the hood would be sufficiently low to allow time for an evacua-
tion.

Sheldahl hood, dual compartmenc: test device IV

The Sheldahl hood, P/N 1009727, was modified to a dual compartment
configuration to increase the effectiveness of the sustaining oxvgen flow in
controlling oxygen and carbon dioxide levels in the compartment around the
head (Figure 5). The gases vented through this compartment via the
sustaining flow are accumulated in the upper compartment before being vented
to the atmosphere. The second compartment provided a residual volume of
breathable gas (via the open ports between the compartments) that might
extend the time this hood could be used for evacuation purposes. Since data
from the initial tests indicated that the dual compartment svstem did not
produce any improvement in oxvgen or carbon dioxide levels when compared
to test device III, testing was discontinued.

Scott-Sierra mask: test device VI

The continuous-flow, phase-dilution passenger oxygen mask accumulates
oxygen in a reservoir bag during the exhalation phase of the respiratory
cycle. When inhalation starts, a valve between the mask and reservoir opens
and oxygen is drawn from the reservoir until it is emptied. At this time a
dilution valve is opened and ambient air is drawn into the mask, providing
the volume necessarv to complete the inhalation process. All expired gases
are passed through an exhalation valve to the ambient atmosphere. If the
aircraft is supplied with stored oxygen, the flow delivered to the mask is
controlled by a pressure valve that increases the flow as cabin pressure
drops. If the aircraft is equipped with a chemical generator system, the
flow of oxvgen to the mask is controlled via core design of the generator.
As oxygen is released, both systems utilize gas expansion as a means to
provide the mask with a sufficient volume of oxygen for the particular
cabin pressure, Consequently, a minimum volume of oxygen is provided during

mild decompressions. Under these conditions, most of the respiratory volume. .

is composed of ambient air drawn through the dilution valve and the mask is
of limited value in a smoke/fume enviromment. An additional gas reservoir
bag, coupled to the exhalation and dilution valves, was added to the mask
(Figures 8 and 9). A rebreather reservoir of this type prevents inhalation
of ambient air and requires an oxygen flow sufficient to maintain oxygen

and carbon dioxide levels wirhin acceptable limits. Two open ports of 6 mm
diameter were provided at the distal end of the rebreather reservoir to vent
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carbon dioxide from the svstem and to prevent the development of back
pressure in the mask. These ports must be properly sized if the rebreather
reservoir is to function properly. :

Results from tests in which the mask was provided sustaining flows of
10 L/min and 8 L/min are not included in this report since the data indicated
that these flow rates were excessive. At flow rates of 5 or 6 L/min (Tables
11, 12, 13, and 14), the POy values obtained with the modified passenger
mask were 20-35 mm less than those obtained with the crew mask (100 percent
oxygen with positive pressure). Considering the types of masks being
compared, these data are remarkable since they indicate the critical
sustaining flow for the modified passenger mask to be between 5 and 4 L/min.

Carbon dioxide levels were tolerated by the subjects through those tests
that had a sustairing flow of 4 L/min oxygen. However, a sustaining flow
of 3 L/min did not sufficientlv flush carbon dioxide from the rebreather
reserveoir, The data indicate that a sustaining flow of about 5 L/min would
be required to control oxygen and carbon dioxide levels within acceptable
limits.

Scott-Sierra mask: tust device VII

This moedification of the passenger oxygen mask differed from test item VI
in that valves were incorporated in the distal end of the rebreather reservoir
in lieu of open ports. Based on data relating to the open port design, it
was assumed that further improvements might be achieved by replacing the open
ports with flapper valves. The data obtained from testing this device does
not support that assumption (Tables 15, 16, 17, and 18). In corsideration of
the limited number of subjects, it would be difficult to identify any true
differences between the two masks that could be attributed to the use of
valves in the rebreather reservoir rather than the ports. However, the use
of open ports instead of valves in the rebreather reservoir is worthy of
consideration from an economic standpoint.

CONCLUSIONS

The use of hood devices for decompression protection would be of limited
value due to their internal volume and the time and oxvgen flow required to
raise oxygen concentrations to acceptable levels. Hoods would be effective
for protection from fumes produced by in~flight fires provided that a
sufficient, sustaining flow of oxygen is furnished to maintain oxvgen and
carbon dioxide levels within acceptable limits. Hoods would be useful for
emergency evacuations provided that thev are donned free of toxic fumes,
contain sufficient oxygen, and have an internal volume large enough to allow
dilution of carbon dioxide.
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The use of a continuous-flow, phase-dilution, controlled-rebreather
oxvgen mask for passenger protection during decompressions appears to offer
advantages over TSO-approved continuous-fiow, phase-dilution tvpe masks.

These results should e verified bv altitude chamber testing. DNata indicate
that masks of this design would provide respiratorv protection from fumes
produced during in-flight fires. The number of subjects tested with these
masks should be increased to obtain a better representation of the population.
The use of this tvype of mask for emergency evacuations would require that

they be charged with oxvgen and donned free of contaminants. This approach,
however, would not provide visual protection from eve irritants.

Of the various devices tested, the passenger oxveen mask modified to
incorporate a controlled-use rebreather reservoir in addition to but separate
from the oxvgen reservoir offers the best approach of the devices tested to
achieve the desired objectives. This type mask would require a flow of
approximately 5 L/min of sustaining oxvgen. Most of the current in-use,
passenger-activated oxvgen svstems, both compressed gas and chemical
penerators, deliver about 3.1 to 6.0 L/min for about 15 min. _Some of the

lower flows, therefore, would have to be increased to meet the 5 L/min needed
flow rate.
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ERRATA SHEET

Office of Aviation Medicine Report No. FAA-AM-83-10, entitled

"AN ANALYSIS OF POTENTIAL PROTECTIVE BREATHING DEVICES INTENDED FOR
USE BY AIRCRAFT PASSENGERS," by D. deSteiguer and J. T. Saldivar.
Published May 1983.

This errata sheet is being distributed to correct the following:

Pages 28 - 35 The last sentence in each of the table
Tables 11 thru 18 headings should be replaced with the
following sentences as indicated:

0 PO LB AEP BRGNP T RO RO PSP OBER NIV OSEIERABONS BRI
.

page 28, Table 11 : Oxygen flow of 6L/min. :

$ @0 40 00 PUG0 L0 LN PCELELEP PR ENOELOEPROCLESISEIIOLEIEESOAESETDS

€ 0 8 0L 00NN ELGELIIB NI ORI OETI PP LEE TSP RNOOEREIRRELPOEEIOSESEDS
) .

Page 29, Table 12 . Oxygen flow of SL/min. .

L A R R Y NN R R RN N RN XN

L A A R N R R R I N R R N R A I I I A I A N I ]
.

Page 30, Table 13 . Oxygen flow of 4L/min. :

D A I I I A I I A A A I A N A N A A N I N I

€ 00 6600000 0 ETIGGEPCEIEPOOPILIEREIEOOERIICETEPINTCEOIEEQREOETITOTSE
.

Page 31, Table 14 . Oxygen flow of 3L/min. .

® 600 ¢ 0000 EL QNP LI PP ILEETIEIeEs O OEEOOCORBOIUEOSIEGEETBRTSTS

0 0006 0000800000 ¢00sveersstossstessesssacseseracdses
.

Page 32, Table 15 . Oxygen flow of 6L/min. .

4 06 00060000800 CININLEPEOIL AT NOGPEEstsBsROROTS

€50 60 0000 EEIEPELPPOOILOBOREPNEEPSEEOESNEOISESEORIBIILOTTS
.

Page 33, Table 16 . Oxygen flow of S5L/min. .

9 00 80 0T P O PETEICIT PR RS EEOLEPOUTOIOESLOEOOEESEIOLAETTTS

G S S0 000000 IEEBBCeOIBREPPOCOOLOPSIENOREBAEIENPNOSBEROGIGETSGSEDOILE
.

Page 34, Table 17 . Oxygen flow of 4L/min. .

66 00 000 SR TEICPPNCENEBTIEPNIOERONPSEIOSEBROESOIOEOREOEBDTOIGSTES

L RN R R R NN RN I I I R I R R R N N R IR A ]
.

Page 35, Table 18 . Oxygen flow of 3L/min. .

0 0 0PIV BIELIIPIOIEVOGLEOICLITFEOIIEBOERNET - S8 SESEBCE e

(Please cut adhesive strip along dotted lines and replace previous sentences

as indicated)




